Downstream synthetic route of 4923-87-9

4923-87-9, 4923-87-9 5-Bromobenzothiophene 2776578, abenzothiophene compound, is more and more widely used in various fields.

4923-87-9, 5-Bromobenzothiophene is a benzothiophene compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(C) To a solution of 5-bromo-1-benzothiophene (12 g, 56.31 mmol) in dry THF (300 mL) under an inert atmosphere was added isopropyl magnesium chloride-lithium chloride complex (1.3 M in THF; 150 mL, 195 mmol) in drop-wise fashion, and the resultant solution was stirred at rt, overnight. DMF (30 mL) was then added in drop-wise fashion and the resultant solution was stirred at rt for 30 min. Water (500 mL) was added and the resulting solution was extracted with ethyl acetate (3*500 mL). The combined organic extracts were concentrated under reduced pressure and the resultant residue was purified by silica gel chromatography (0-2% EtOAC/petroleum ether) to provide benzo[b]thiophene-5-carbaldehyde (6.9 g, 68%) as a yellow solid. 1H NMR (DMSO-d6) delta 10.12 (s, 1H), 8.32 (s, 1H), 8.01 (d, J=8.4 Hz, 1H), 7.86-7.89 (m, 1H), 7.57-7.61 (m, 1H), 7.47-7.50 (m, 1H).

4923-87-9, 4923-87-9 5-Bromobenzothiophene 2776578, abenzothiophene compound, is more and more widely used in various fields.

Reference£º
Patent; Janssen Pharmaceutica NV; Liang, Yin; Demarest, Keith T.; (109 pag.)US2017/290800; (2017); A1;,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem

 

Some tips on 4923-87-9

4923-87-9, The synthetic route of 4923-87-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4923-87-9,5-Bromobenzothiophene,as a common compound, the synthetic route is as follows.

[0114] A mixture of 2-chloro-5-methyl-pyrimidin-4-ylamine (0.30 g, 2.1 mraol), 5- bromo-benzo[]thiophene (0.6 g, 2.8 mmol), Pd2(dba)3 (95 mg, 0.10 mmol), Xantphos (0.12 g, 0.20 mmol) and cesium carbonate (1.3 g, 4.0 mmol) was suspended in dioxane (25 mL) and heated at reflux under the argon atmosphere for 3 h. The reaction mixture was cooled to room temperature and diluted with DCM (30 mL) . The mixture was filtered and the filtrate concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane to 30% EtOAc/hexane) to afford the title intermediate 13 (0.23 g, 40%) as a white solid. MS (ESI+): m/z 276 (M+H)+.

4923-87-9, The synthetic route of 4923-87-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; TARGEGEN, INC.; WO2007/53452; (2007); A1;,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem

 

Some tips on 4923-87-9

The synthetic route of 4923-87-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4923-87-9,5-Bromobenzothiophene,as a common compound, the synthetic route is as follows.,4923-87-9

EXAMPLE 9 N-[(5-bromobenzor[b]thien-3-yl)methyl]-sulfamide (Compound #15) 5-Bromobenzothiophene (1.60 g, 7.51 mmol) and dichloromethyl methyl ether (1.29 g, 11.3 mmol) were dissolved in anhydrous 1,2-dichloroethane (75 mL). Titanium tetrachloride (2.14 g, 11.3 mmol) was added, turning the solution dark. After one hour at room temperature, the reaction was poured into a mixture of saturated aqueous NaHCO3 and ice. The mixture was stirred for about 30 minutes and then was extracted with DCM (2*100 mL). The extracts were concentrated and chromatographed (0 to 5% ethyl acetate in hexane) to yield 5-bromo-benzo[b]thiophene-3-carbaldehyde (1.32 g).

The synthetic route of 4923-87-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Parker, Michael H.; Reitz, Allen B.; Maryanoff, Bruce E.; US2006/47001; (2006); A1;,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem

 

Some tips on 4923-87-9

The synthetic route of 4923-87-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4923-87-9,5-Bromobenzothiophene,as a common compound, the synthetic route is as follows.,4923-87-9

General procedure: A mixture of magnesium (288 mg, 12 mmol) and aryl bromide (15.6 mmol) was reacted in dry tetrahydrofuran under reflux for 30 minutes. Then, a solution of 2-aminobenzonitrile (708 mg, 6.0 mmol) in dry tetrahydrofuran (8 mL) was added slowly. After a refluxed period (2 h), methyl chloroformate (977 mg, 9.0 mol) was added dropwise at 0 C, and the resulting mixture was refluxed for 14 h. The mixture was cooled to ambient temperature and poured into a hydrochloric acid solution (2 M). The mixture was neutralized with 10% sodium bicarbonate aqueous solution and extracted with dichloromethane (30 mL ¡Á 3). The combined organic layer was dried over anhydrous sodium sulfate, concentrated in vacuo. The residue obtained was purified by flash column chromatography using dichloromethane/methanol as eluent to achieve the product. 4-(benzo[b]thiophen-5-yl)quinazolin-2(1H)-one (1m): white solid, mp: 312-313 C, 70% yield, the new compound, Rf = 0.25 (dichloromethane/methanol = 25/1); 1H NMR (400 MHz, DMSO-d6) delta 11.97 (s, 1H), 8.22 (d, J = 8.7 Hz, 2H), 7.91 (d, J = 5.4 Hz, 1H), 7.75 (t, J = 7.8 Hz, 2H), 7.67 (dd, J = 8.4, 1.1 Hz, 1H), 7.62 (d, J = 5.4 Hz, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H). 13C NMR (100 MHz, DMSO-d6) delta 175.6, 155.4, 143.9, 141.5, 139.7, 135.6, 133.2, 129.4, 129.1, 125.5, 125.2, 125.0, 123.2, 122.9, 116.0, 114.8. HRMS (ESI) m/z Calculated for C16H10N2OS [M+H]+ 279.0587, found 279.0584.

The synthetic route of 4923-87-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Meng, Fan-Jie; Shi, Lei; Jiang, Wen-Feng; Feng, Guang-Shou; Lu, Xiao-Bing; Zhao, Zi-Biao; Tetrahedron Letters; vol. 60; 33; (2019);,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem

 

Downstream synthetic route of 4923-87-9

4923-87-9, 4923-87-9 5-Bromobenzothiophene 2776578, abenzothiophene compound, is more and more widely used in various fields.

4923-87-9, 5-Bromobenzothiophene is a benzothiophene compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5-Bromobenzothiophene (1.60 g, 7.51 mmol) and dichloromethyl methyl ether (1.29 g, 11.3 mmol) were dissolved in anhydrous 1,2-dichloroethane (75 mL). Titanium tetrachloride (2.14 g, 11.3 mmol) was added, turning the solution dark. After one hour at room temperature, the reaction was poured into a mixture of saturated aqueous NaHCO3 and ice. The mixture was stirred for about 30 minutes and then was extracted with DCM (2¡Á100 mL). The extracts were concentrated and chromatographed (0 to 5% ethyl acetate in hexane) to yield 5-bromo-benzo[b]thiophene-3-carbaldehyde (1.32 g). The 5-bromobenzothiophene-3-carboxaldehyde (1.20 g, 4.98 mmol) and sulfamide (4.0 g, 42 mmol) were combined in anhydrous ethanol (25 mL) and heated to reflux for three days. The reaction was cooled to room temperature and sodium borohydride (0.207 g, 5.47 mmol) was added. After five hours, water (50 ml) was added and the solution was extracted with chloroform (3¡Á50 mL). The extracts were concentrated, suspended in a minimal amount of DCM, and filtered to provide the title compound as a yellow solid. 1H NMR (DMSO-d6): delta 8.12 (1H, d, J=1.8 Hz), 7.97 (1H, d, J=8.6), 7.71 (1H, s), 7.52 (1H, dd, J=8.6, 1.9 Hz), 7.12 (1H, t, J=6.3 Hz), 6.72 (2H, s), 4.28 (2H, d, J=6.2 Hz).

4923-87-9, 4923-87-9 5-Bromobenzothiophene 2776578, abenzothiophene compound, is more and more widely used in various fields.

Reference£º
Patent; Abdel-Magid, Ahmed F.; Mehrman, Steven J.; US2006/270856; (2006); A1;,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem

 

Analyzing the synthesis route of 4923-87-9

4923-87-9, As the paragraph descriping shows that 4923-87-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4923-87-9,5-Bromobenzothiophene,as a common compound, the synthetic route is as follows.

5-Bromobenzothiophene (1.60 g, 7.51 mmol) and dichloromethyl methyl ether (1.29 g, 11.3 mmol) were dissolved in anhydrous 1,2-dichloroethane (75 mL). Titanium tetrachloride (2.14 g, 11.3 mmol) was added, turning the solution dark. After one hour at room temperature, the reaction was poured into a mixture of saturated aqueous NaHCO3 and ice. The mixture was stirred for about 30 minutes and then was extracted with DCM (2¡Á100 mL). The extracts were concentrated and chromatographed (0 to 5% ethyl acetate in hexane) to yield 5-bromo-benzo[b]thiophene-3-carbaldehyde (1.32 g). The 5-bromobenzothiophene-3-carboxaldehyde (1.20 g, 4.98 mmol) and sulfamide (4.0 g, 42 mmol) were combined in anhydrous ethanol (25 mL) and heated to reflux for three days. The reaction was cooled to room temperature and sodium borohydride (0.207 g, 5.47 mmol) was added. After five hours, water (50 ml) was added and the solution was extracted with chloroform (3¡Á50 mL). The extracts were concentrated, suspended in a minimal amount of DCM, and filtered to provide the title compound as a yellow solid. 1H NMR (DMSO-d6): delta 8.12 (1H, d, J=1.8 Hz), 7.97 (1H, d, J=8.6), 7.71 (1H, s), 7.52 (1H, dd, J=8.6, 1.9 Hz), 7.12 (1H, t, J=6.3 Hz), 6.72 (2H, s), 4.28 (2H, d, J=6.2 Hz).

4923-87-9, As the paragraph descriping shows that 4923-87-9 is playing an increasingly important role.

Reference£º
Patent; Smith-Swintosky, Virginia L.; Parker, Michael H.; Reitz, Allen B.; Maryanoff, Bruce E.; US2007/293476; (2007); A1;,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem

 

New learning discoveries about 4923-87-9

4923-87-9 5-Bromobenzothiophene 2776578, abenzothiophene compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4923-87-9,5-Bromobenzothiophene,as a common compound, the synthetic route is as follows.,4923-87-9

General procedure: To a solution in THF (4 mL) of DIPAB (863 mg, 7.5 mmol) and Mg (182 mg, 7.5 mmol) were added a PhMgBr 1M THF solution (375 muL, 375mumol) at room temperature. After 10 min, 30 mL of anhydrous THF were added followed by the arylbromide (5 mmol). The reaction mixture was cooled down to 0 C and quenched slowly with 7 mL of MeOH. After 1h, volatile were removed under reduced pressure and the resulting solid was dissolved in 1N HCl/MeOH (7/3). After 1h at room temperature, 100 mL of AcOEt were added, the organic phase was washed with 1N HCl (30 mL) and brine (3¡Á30 mL). Organic phases were concentrated under reduced pressure yielding a solid which was recrystallized from H2O.

4923-87-9 5-Bromobenzothiophene 2776578, abenzothiophene compound, is more and more widely used in various fields.

Reference£º
Article; Marciasini, Ludovic D.; Richard, Jimmy; Cacciuttolo, Bastien; Sartori, Guillaume; Birepinte, Melodie; Chabaud, Laurent; Pinet, Sandra; Pucheault, Mathieu; Tetrahedron; vol. 75; 2; (2019); p. 164 – 171;,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem

 

Downstream synthetic route of 4923-87-9

4923-87-9 5-Bromobenzothiophene 2776578, abenzothiophene compound, is more and more widely used in various fields.

4923-87-9,4923-87-9, 5-Bromobenzothiophene is a benzothiophene compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5-Bromobenzothiophene (1.60 g, 7.51 mmol) and dichloromethyl methyl ether (1.29 g, 11.3 mmol) were dissolved in anhydrous 1,2-dichloroethane (75 mL). Titanium tetrachloride (2.14 g, 11.3 mmol) was added, turning the solution dark. After one hour at room temperature, the reaction was poured into a mixture of saturated aqueous NaHCO3 and ice. The mixture was stirred for about 30 minutes and then was extracted with DCM (2¡Á100 mL). The extracts were concentrated and chromatographed (0 to 5% ethyl acetate in hexane) to yield 5-bromo-benzo[b]thiophene-3-carbaldehyde (1.32 g). The 5-bromobenzothiophene-3-carboxaldehyde (1.20 g, 4.98 mmol) and sulfamide (4.0 g, 42 mmol) were combined in anhydrous ethanol (25 mL) and heated to reflux for three days. The reaction was cooled to room temperature and sodium borohydride (0.207 g, 5.47 mmol) was added. After five hours, water (50 ml) was added and the solution was extracted with chloroform (3¡Á50 mL). The extracts were concentrated, suspended in a minimal amount of DCM, and filtered to provide the title compound as a yellow solid.1H NMR (DMSO-d6): delta 8.12 (1H, d, J=1.8 Hz), 7.97 (1H, d, J=8.6), 7.71 (1H, s), 7.52 (1H, dd, J=8.6, 1.9 Hz), 7.12 (1H, t, J=6.3 Hz), 6.72 (2H, s), 4.28 (2H, d, J=6.2 Hz).

4923-87-9 5-Bromobenzothiophene 2776578, abenzothiophene compound, is more and more widely used in various fields.

Reference£º
Patent; Smith-Swintosky, Virginia L.; US2007/191461; (2007); A1;,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem

 

Analyzing the synthesis route of 4923-87-9

As the paragraph descriping shows that 4923-87-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4923-87-9,5-Bromobenzothiophene,as a common compound, the synthetic route is as follows.,4923-87-9

General procedure: A mixture of compound 2a,b (1.17 mmol), 4-hydroxyphenylboronicacid (3, 1.45 mmol, 200 mg), cesium carbonate (2.34 mmol, 0.763 g),and dichloro-[1,1?-bis[bis(1,1-dimethylethyl)phosphino]ferrocene-P,P?]palladium (0.059 mmol, 0.038 g) in a mixture of dimethoxyethane(15 mL) and distilled water (10 mL) was flushed with nitrogen andheated at 90 C under nitrogen overnight. Once the reaction completionwas confirmed using TLC, the reaction mixture was evaporated invacuo, and the residue was partitioned between water (20 mL) andethyl acetate (3¡Á20 mL). The combined organic layer extracts weredried over anhydrous sodium sulfate and evaporated in vacuo to dryness.They were used as such in the next steps.

As the paragraph descriping shows that 4923-87-9 is playing an increasingly important role.

Reference£º
Article; Zaraei, Seyed-Omar; El-Gamal, Mohammed I.; Shafique, Zainab; Amjad, Sayyeda Tayyeba; Afridi, Saifullah; Zaib, Sumera; Anbar, Hanan S.; El-Gamal; Iqbal, Jamshed; Bioorganic and Medicinal Chemistry; vol. 27; 17; (2019); p. 3889 – 3901;,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem

 

Some tips on 4923-87-9

The synthetic route of 4923-87-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4923-87-9,5-Bromobenzothiophene,as a common compound, the synthetic route is as follows.

5-Bromobenzothiophene (1.60 g, 7.51 mmol) and dichloromethyl methyl ether (1.29 g, 11.3 mmol) were dissolved in anhydrous 1,2-dichloroethane (75 mL). Titanium tetrachloride (2.14 g, 11.3 mmol) was added, turning the solution dark. After one hour at room temperature, the reaction was poured into a mixture of saturated aqueous NaHCO3 and ice. The mixture was stirred for about 30 minutes and then was extracted with DCM (2¡Á100 mL). The extracts were concentrated and chromatographed (0 to 5% ethyl acetate in hexane) to yield 5-bromo-benzo[b]thiophene-3-carbaldehyde (1.32 g). The 5-bromobenzothiophene-3-carboxaldehyde (1.20 g, 4.98 mmol) and sulfamide (4.0 g, 42 mmol) were combined in anhydrous ethanol (25 mL) and heated to reflux for three days. The reaction was cooled to room temperature and sodium borohydride (0.207 g, 5.47 mmol) was added. After five hours, water (50 ml) was added and the solution was extracted with chloroform (3¡Á50 mL). The extracts were concentrated, suspended in a minimal amount of DCM, and filtered to provide the title compound as a yellow solid.1H NMR (DMSO-d6): delta 8.12 (1H, d, J=1.8 Hz), 7.97 (1H, d, J=8.6), 7.71 (1H, s), 7.52 (1H, dd, J=8.6, 1.9 Hz), 7.12 (1H, t, J=6.3 Hz), 6.72 (2H, s), 4.28 (2H, d, J=6.2 Hz)., 4923-87-9

The synthetic route of 4923-87-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Smith-Swintosky, Virginia L.; US2007/191460; (2007); A1;,
Benzothiophene – Wikipedia
Benzothiophene | C8H6S – PubChem