Having gained chemical understanding at molecular level, chemistry graduates may choose to apply this knowledge in almost unlimited ways, as it can be used to analyze all matter and therefore our entire environment. Electric Literature of 6386-80-7
Two groups of amphetamine-like drugs with psychostimulant properties that were first developed during the course of scientific studies and later emerged as new psychoactive substances (NPS) are based on the (2-aminopropyl)indole (API) and (2-aminopropyl)benzofuran (APB) structural scaffolds. However, sulfur-based analogs with a benzo[b]thiophene structure (resulting in (2-aminopropyl)benzo[b]thiophene (APBT) derivatives) have received little attention. In the present investigation, all six racemic APBT positional isomers were synthesized in an effort to understand their structure?activity relationships relative to API- and APB-based drugs. One lesson learned from the NPS phenomenon is that one cannot exclude the appearance of such substances on the market. Therefore, an in-depth analytical characterization was performed, including various single- and tandem mass spectrometry (MS) and ionization platforms coupled to gas chromatography (GC) and liquid chromatography (LC), nuclear magnetic resonance spectroscopy (NMR), and solid phase and GC condensed phase infrared spectroscopy (GC-sIR). Various derivatizations have also been explored; it was found that all six APBT isomers could be differentiated during GC analysis after derivatization with heptafluorobutyric anhydride and ethyl chloroformate (or heptafluorobutyric anhydride and acetic anhydride) under non-routine conditions. Discriminating analytical features can also be derived from NMR, GC-EI/CI- single- and tandem mass spectrometry, LC (pentafluorophenyl stationary phase), and various infrared spectroscopy approaches (including GC-sIR). Availability of detailed analytical data obtained from these novel APBT-type stimulants may be useful to researchers and scientists in cases where forensic and clinical investigations are warranted.
In conclusion, we affirm that quantitative kinetic descriptions of catalytic behavior continue to navigate research efforts intended to implement such knowledge in the development of new catalytic chemistries. Read on for other articles about 6386-80-7. Electric Literature of 6386-80-7
Reference:
Benzothiophene – Wikipedia,
Benzothiophene | C8H6S – PubChem